Chapter 10: Protein Synthesis

Biology

Let's Review

- What are proteins?
 - Chains of amino acids
 - Some are enzymes
 - Some are structural components of cells and tissues

More Review

- What are ribosomes?
 - Cell structures built of protein and RNA
 - The site of protein synthesis

And More Review..

- What is the difference between DNA and genes?
 - DNA is a long molecule of nucleotides that contains many genes
 - Genes are short segments of DNA that code for a specific protein or RNA

And more...

- What is the structure and function of DNA?
 - It is two strands of complementary nucleotides
 - Four bases adenine, thymine, cytosine, guanine

And finally.... What are the base-pairing rules? Adenine pairs with thymine Cytosine pairs with guanine -Sugar (deoxyribose) Phosphate group Sugar-phosphate backbone CCG G G Weak hydrogen bonds Key Thymine Nucleotide Adenine Cytosine Guanine

From Genes to Proteins

- Proteins are built according to instructions coded in DNA
- Proteins are not built directly from DNA
- RNA must be involved

Differences between RNA & DNA

- RNA is a *single strand* of nucleotides, DNA is double-stranded
- RNA contains the sugar *ribose*, DNA contains deoxyribose
- RNA has adenine, cytosine, and guanine, but the fourth base is *uracil*, DNA contains thymine as the fourth base

Image adapted from: National Human Genome Research Institute.

Transcription

The process of transferring the instruction for the making of a protein from the gene to an RNA molecule

Translation

The process of putting together the amino acids to make a protein by reading the instructions on the RNA

molecule

Protein Synthesis

- The entire process of making proteins from the information that is encoded in DNA
- Also called gene expression

Transcription

The first step – taking the information from a gene and transferring it to a molecule of RNA

RNA polymerase

An enzyme that adds and links the complementary RNA nucleotides together as it "reads" the DNA nucleotides

Transcription

Transcription – Step 1

 RNA polymerase binds to the gene's promoter-the "start" sequence

Transcription – Step 2

 RNA polymerase unwinds and separates the two DNA strands, exposing the nucleotides

Transcription – Step 3

RNA polymerase adds and links RNA nucleotides as it "reads" the gene, following the base-pairing rules with cytosine paired to guanine and adenine paired to uracil

Stop signal

Transcription proceeds until RNA polymerase reaches a "stop" sequence that marks the end of the gene

Formation of RNA strand

- RNA polymerase adds RNA nucleotides to the single strand of RNA and these link together with covalent bonds
- As the RNA polymerase travels down the strand, the DNA double strand closes up behind it
- Only one part of the DNA strand serves as a template

Transcription

- Takes place in the nucleus of eukaryotic cells
- Takes place in the cytoplasm of prokaryotic cells

Messenger RNA

- This is the type of RNA that is made when the cell needs a particular protein
- This type of RNA carries the instructions for the protein to the site of translation

Translation

- The nucleotides are "translated" from the language of nucleotides to the language of proteins
- The RNA instructions are written in 3-nucleotide sequences called *codons*

The genetic code

- The codons code for a specific amino acid
- The amino acids and the start and stop signals coded by each of the possible codons is arranged in a chart-the genetic code

		SECOND BASE				1
		U	С	A	G	
(*)	U C	UUU } Phe	UCU UCC } Ser	UAU UAC } Tyr	UGU UGC } Cys	U C
		UUA UUG } Leu	UCA UCG	UAA UAG Stop	UGA Stop UGG Trp	A G
		CUU } Leu	ccc Pro	CAU CAC	CGU Arg	U C
I BASI		CUA CUG	CCA CCG ^{} Pro}	CAA CAG Gln	CGA CGG Arg	A G O BASE
FIRS	A		ACU ACC Thr	AAU AAC Asn	AGU AGC Ser	THIRI
		AUG Met	ACG Thr	AAG Lys	AGG Arg	G
	G	GUC Yal	GCC Ala	GAC SAA	GGC Gly	C A
		GUG } Val	GCG ^{} Ala}	GAG } Glu	GGG GIy	G

Translation

- Takes place in the cytoplasm
- Ribosomes and RNA molecules help create the protein

tRNA

- Transfer RNA are single strands of RNA that temporarily hold a specific amino acid on one end of their structure
- It is folded into a compact cloverleaf shape, and has an anticodon
- Anticodon a 3-nucleotide sequence that is complementary to an mRNA codon

rRNA

- Ribosomal RNA are RNA molecules that make up part of the ribosome
- A cell's cytoplasm has thousands of ribosomes

Ribosome

Each temporarily holds one mRNA and two tRNA molecules

7 Steps of Translation – Step 1

- Step 1: mRNA, tRNA carrying methionine, and 2 ribosomal subunits bind together
 - The mRNA, the 2 ribosomal subunits, and the tRNA carrying methionine form a functional ribosome
 - The mRNA start codon "AUG" is oriented in the P site of the ribosome, so the tRNA can bind to the start codon

- Step 2: The tRNA carrying the amino acid specified by the codon in the A site arrives
 - The tRNA with the complementary anticodon binds to the codon in the A site

- Step 3: Enzymes help form a peptide bond between the two amino acids
 - The A and the P site are occupied by tRNA molecules with their specific amino acids
 - Peptide bonds will join the adjacent amino acids to form an amino acid chain

Step 4: The tRNA in the P site will detach leaving behind the amino acid

- Step 5: The tRNA and associated mRNA in the A site shift over to the P site
 - This occurs in such a way that the entire ribosome shifts, so that the A site has a new codon of the mRNA unit
 - The tRNA with the complementary anticodon binds to the new codon in the A site

Step 6: The tRNA in the P site detaches, leaving its amino acid

- Steps 2 6 are repeated until the "stop" codon is reached
 - The stop codon does not have a tRNA with a complementary anticodon, so protein synthesis stops
 - The stop codons are: UAG, UAA, or UGA
 - The new protein is released into the cell