ume	Class	Data
ikills Worksheet		Date
Fest Prep Pretest		
the space provided, write the letter of the character of the character of the statement or best answers each questions.	he term or phras	e that best comple
1. Photosynthetic organisms get e	energy from	
inorganic substances.	c. autotrop	hs.
b. light.	d. heterotro	ophs.
2. Which of the following correct	y sequences the	flow of energy?
a. bacteria, fungus, rabbit	c. sun. gras	s, rabbit, fox
b. bacteria, sun, flower, deer	d. sun, haw	
3. ATP molecules		
produce NADPH.		
 b. contain five phosphate group 	os.	
c. can both store energy and pr	ovide it for meta	abolic reactions.
d. help a plant produce carbon	dioxide.	
4. In glycolysis,		
a. aerobic processes occur.		
b. four ATP molecules are produced	uced.	
c. four ADP molecules are prod	luced.	
d. glucose is produced.		
5. Which of the following environm	nental factors do	os NOT directle
influence the rate of photosynth	esis?	es NOT directly
a. light intensity		oxide concentratio
b. oxygen concentration	d. temperatu	
6. Carbon dioxide fixation in the C	alvin cycle recui	TOG:
a. ATP and NADPH.	c. ADP and N	NADPH
b. ATP and NADP ⁺ .	d. ATP and o	
7. When this gas is available, aerob		_
Game and an entire action	*~ *cohtramotr 10]	HOMS SINCUIVSIS
a. carbon dioxide	c. hydrogen	G-J 00-J 0201

Question 8 refers to the chemical equation below.

 $3\text{CO}_2 + 3\text{H}_2\text{O} \xrightarrow{\text{light}} \text{C}_3\text{H}_6\text{O}_3 + 3\text{O}_2$

- 8. This equation summarizes the overall process of a. cellular respiration.
 - **b.** photosynthesis.

- c. the Calvin cycle.
- d. the Krebs cycle.

Name	Class	Date
Test Prep Pretest continued		
9. Which of the following is No	OT newt of collular roses	iration?
a. electron transport chain		iration:
b. glycolysis	d. Calvin cycle	
10. Electrons in pigment molec	ules become excited	
a. when light strikes a thyla		
b. when water molecules ar	the first of the second second	
c. during light-independent	reactions.	
d. during the Calvin cycle.		
Complete each statement by writing the	correct term or phrase	in the space
provided.		
11. The carrier protein that transports	hydrogen ions across th	nylakoid mem-
branes and produce ATP acts as bo	th a(n)	<u> </u>
and a(n)) 12	•
2. The		is the most com-
mon method of carbon dioxide fixa	tion.	*
3. Aerobic respiration occurs in the _		_ of eukaryotic
cells.		
4. Plants use sugars produced during		to make
organic compounds.		
5. During photosynthesis, light energy	is converted to	
energy.		
6. During anaerobic processes, NADH	transfers electrons to	the pyruvate pro-
duced during		
-		, ,
17. Glycolysis is a biochemical pathwa		x-carbon glucose
molecule to two three-carbon		
18. During aerobic respiration, pyruvat	e is first converted to a	cetyl-CoA, which
enters the		-
19. During cellular respiration, a cell pr	roduces most of its ener	rgy through
ragnirati	on	

ame	Class	Date
Test Prep Pretest continued		
Light-absorbing	are loo	cated in the membranes of
ead each question, and write. Explain how the metaboli	e your answer in the spa sm of heterotrophs diffe	ce provided. ers from that of autotrophs
Explain how ATP provide	s energy for cells.	
Briefly explain how ATP in photosynthesis.	is produced by electron	transport chains during
		And the second s

Name	Class	Date
Test Prep Pretest continued		
24. Describe how environme	ental factors affect the rat	e of photosynthesis.
·		Ġ
25. Explain the benefits and fermentation.	uses of lactic acid fermer	ntation and alcoholic
	,	

Name	Class	Date

Skills Worksheet

Concept Mapping

Using the terms and phrases provided below, complete the concept map showing the characteristics of cellular respiration.

anaerobic process

glucose

NAD+

electron transport chain

glycolysis

pyruvate

fermentation

Krebs cycle

