NOTES & **HOMEWORK**

Quick Review: base	\rightarrow b ^x	← exponent
--------------------	-------------------------------------	------------

Evaloring Evaponential Patterns:

Number of Folds	Number of Rectangles	Pattern	Written with Exponents
0			
1			
2			
3			
4		·	
5			

- 1. What do you notice in the number of rectangles as the number of folds increases? Explain.
- 2. Suppose you could continue to fold the paper. Extend your table to include 10 folds. How many rectangles would there be?
- 3. Use an exponent to write each number:

Example 1:

Suppose there are 20 rabbits on an island and that the rabbit population can triple every half-year. How many rabbits would there be after 2 years?

Time	Number of Rabbits
Initial	20
½ year	20 · 3 =
1 year	
1 ½ years	
2 years	

After 2 years, there would be _____ rabbits.

Evaluating Exponential Functions

You can write the pattern you found in the folded paper example with a variable as an exponent. To find the number of rectangles r created by n folds, use the function $r = 2^n$. You read the expression 2^n as "2 to the nth power." The number of rectangles increases exponentially as the paper-folding continues.

Substitute 10 for n in the function $r=2^n$. Use your calculator to find the value for r. $r=2^{10}$ r=

Calculator Hint: To evaluate 2^n for n = 10, press 2 ^ 10 ENTER.

How does your answer compare to your answer to your answer in Question 2?

The function $r = 2^n$ is an exponential function.

Example 2:

Evaluate each exponential function

a.)
$$y = 5^x$$
 for $x = 2, 3, 4$

x	$y = 5^x$	y
2		-
3		
4		

b.) $t(n) = 4(3^n)$ for the domains $\{3, 6\}$

n	$t(n)=4(3^n)$	t(n)
3		1.5
6		

Practice:

Which function is greater at the given value?

1.)
$$y = 5^x$$
 and $y = x^5$ at $x = 5$

2.)
$$f = 10 \cdot 2^t$$
 and $f = 200 \cdot t^2$ at $t = 7$

Evaluate each function for the domain {1, 2, 3, 4, 5}

1.)

x	$f(x) = 4^x$	f(x)
1		
2		
3		
4		
5		

Is the function increasing, decreasing, or neither?

Evaluate each function for the domain {1, 2, 3, 4, 5}

2.)

x	$f(x) = 100 \cdot 0.3^{x}$	f(x)
1		
2		
3		
4		
5		

Is the function increasing, decreasing, or neither?

Multiplication and Exponents:

Rewrite each product below into expanded form and then rewrite it in exponential form with a single base.

$$1.)3^4 \cdot 3^2 =$$

$$(2.)x^3 \cdot x^5 =$$

3.)
$$10^3 \cdot 10^6 =$$

What's happening to the exponents?

Multiplication Property of Exponents

For any nonzero value of b and any integer values of m and n,

$$b^m \cdot b^n = b^{m+n}$$

1.)
$$3^4 \cdot 2^2 =$$
 _____ 2.) $5^2 \cdot 3^4 =$ _____

2.)
$$5^2 \cdot 3^4 =$$

Power Properties of Exponents

For any nonzero values of a and b and any integer values for m and n,

$$(b^m)^n = b^{mn}$$

$$(ab)^n = a^n b^n$$

1.)
$$(4^5)^2 =$$

2.)
$$(x^3)^4 =$$

3.)
$$(xy)^3 =$$

Homework:

Evaluate each expression.		
1.) $50 \cdot x^5$ for $x = 0.5$	2.) $50,000 \cdot \text{m}^3$ for m = 1.1	3.) $0.0125 \cdot c^4$ for $c = 2$
,		

Match the table with the function that models the data.

Table I		
x	y	
1	3	
2	6	
3	9	
4	12	

Functions:

A.
$$y = 3x$$

B. $y = x^3$
C. $y = 3^x$

C.
$$y = 3^x$$

USE YOUR TEXTBOOK PAGE 385-386 FOR THE FOLLOWING PROBLEMS.

1.a.	1.b.	1.c.	1.d.
2.a.	2.b.	2.c.	2.d.

3.a.	3.b.	3.c.	3.d.
4.a.	4.b.	4.c.	4.d.
5.			