Frequency (Hz)

262

277

Fitting Exponential Models to Data

In this assignment, you will be using the exponential equation. There are two ways it can be written.

$y = a \bullet b^x$	$y = a \bullet (1 + r)^x$
Where $a = $ starting value and $b = $ the rate of change	Where $a = starting value$ and $r = % increase or$
	decrease

Note name

Middle C

C#

associated frequency measured in hertz (Hz), or vibrations per second. The table shows the approximate frequencies of the notes in the octave from middle C up to the next C on a piano. (In this scale, E# is the same as F and B# is the same as C.)

Note above

middle C

C II	1	277
D	2	294
D#	3	311
E	4	330
F	5	349
F#	6	370
G	7	392
G#	8	415
Α	9	440
A#	10	466
В	11	494
C above middle C	12	523

The arrangement of strings in a piano shows an exponential-like curve.

- a.) Using the graph paper in this packet to plot the data for the frequencies of the piano notes.
- b.) Use your calculator to write an equation, in the form of y = a, in the form of $y = a \cdot b^x$, that fits the data.
- c.) Use the equation to find the frequency of the note two octaves above middle C (note 24).
- d.) Find the note with a frequency of 600 Hz. In other words, what will the x value be when the y value reaches 600?

2.) Between 1960 and 1990, the population of a town increased at a rate of 0.34% per year. The population, P, in year t is given by $P = 2000(1.0034)^t$ where t = 0 corresponds to 1980. Find the population of the town in 1980, 1985, 1990, and 1995.

Year	t	P
1980	0	
1985	5	
1990	10	
1995	15	

3.) Rewrite each value as either 1 + r or 1 - r. Then state the rate of increase or decrease as a percent.

Example.) 1.15

Answer \rightarrow 1 + 0.15; rate of increase: 15%

a.) 1.08

b.) 0.76

- c.) .0998
- d.) 2.5

- 4.) Use the equation $y = 47(1-0.12)^x$ to answer each question.
 - a.) Does this equation model an increasing or decreasing pattern?
 - b.) What is the rate of increase or decrease?
 - c.) What is the y-value when x is 13?
 - d.) What happens to the y-values as the x-values get very large?

5.) Mya placed a cup of hot water in a freezer. Then she recorded the temperature of the water each minute.

Water Temperature

				• •							
Time (x)	0	1	2	3	4	5	6	7	8	9	10
Temperature ^o (y)	47	45	43	41.5	40	38.5	37	35.5	34	33	31.5

- a.) Find the initial (starting) value.
- b.) Find the rate of change.
- c.) Write an equation in $y = a(1-r)^x$ form.
- d.) Use your equation to predict how long it will take for the water temperature to drop below 5°C.
- 6.) Write an equation to model the growth of an initial deposit of \$250 in a savings account that pays 4.25% annual interest. Let B represent the balance in the account and let t represent the number of years the money has been in the account.

7.) Use the properties of exponents to rewrite each expression with only positive exponents.

a.
$$4x^3 \cdot (3x^5)^3$$

b.
$$\frac{60x^8y^4}{15x^3y}$$
 c. $3^2 \cdot 2^3$

c.
$$3^2 \cdot 2^3$$

$$\mathbf{d.} \; \frac{(8x^3)^2}{(4x^2)^3}$$

e.
$$x^{-3}y^4$$

f.
$$(2x)^{-3}$$

g.
$$2x^{-3}$$

$$h. \frac{2x^{-4}}{(3y^2)^{-3}}$$