NOTES & HOMEWORK

Name Period Linear Inequalities

Quick Review:

< "Less Than"

≤ "Less Than or Equal To"

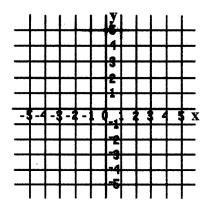
> "Greater Than"

≥ "Greater Than or Equal To"

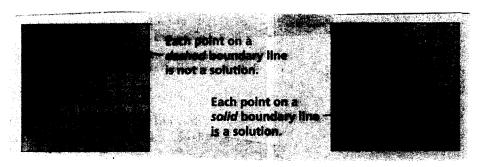
Just as you have used inequalities to describe graphs on a number line, you can use inequalities to describe regions of a coordinate plane.

Number Line:

x < 1



Coordinate Plane:


x < 1

What do you think the graph of y > 2 looks like on a coordinate grid?

A linear inequality describes a region of the coordinate plane that has a boundary line. Every point in the region is a solution of the inequality.

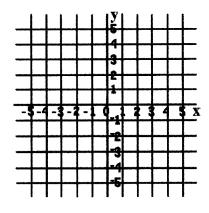
Is (1, 2) a solution for either inequality shown above? Explain.

Example 1:

Graph
$$y < 2x + 3$$

First, graph the boundary line y = 2x + 3 (Slope = _____, Y-intercept = _____)

Points on the boundary line do *not* make the inequality true. So, you must use a dashed line.


CHECK:

Next, test a point. Use (0, 0).

$$y < 2x + 3$$

$$0 < 2(0) = 3$$

The inequality is true for (0, 0). So, shade the region containing (0, 0).

How would the graph look different if the inequality would have been: $y \ge 2x + 3$

When doing a check you could test any point on the graph. Why is (0, 0) a good choice?

Example 2:

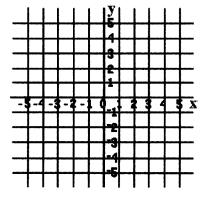
Graph
$$2x - 5y \le 10$$

First, rearrange the inequality so that it is written in slope-intercept form $(y \le a + bx)$

$$2x - 5y \le 10$$

$$-2x$$
 $-2x$

$$-5y \le 10 - 2x$$


 $\frac{\div -5}{y}$ $\frac{\div -5}{5}$ Don't forget that you have to divide the entire right side by −5. So, 10÷-5 AND -2x÷-5. $y \ge -2 + \frac{2}{5}x$ AND since you divided by a negative 5, you have to flip the inequality sign.

Now, graph $y \ge -2 + \frac{2}{5}x$ (Slope = ____, y-intercept = ____)

Dashed line or solid line?

Which part will you shade? Just use the CHECK by substituting in the point (0, 0).

$$y \ge -2 + \frac{2}{5} x$$

 $0 \ge -2 + \frac{2}{5} (0)$
 $0 \ge -2$ TRUE © So, shade the region containing $(0, 0)$.

Determine which ordered pairs are part of the solution set for each inequality. Circle those points that ARE solutions.

1.)
$$y > 3x \{(1, 5), (1, 0), (-1, 0), (5, 1)\}$$

2.)
$$y \ge x + 3 \{(2, -3), (-2, -1), (1, 6), (3, 4)\}$$

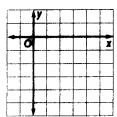
Example:

Insert (1, 5) and see if it is true.

$$5 > 3$$
 TRUE © So, it is a solution.

Now check the rest:

Graph each inequality.


Is the inequality in the slope-intercept form? If not, rearrange.

$$y \ge x - 5$$

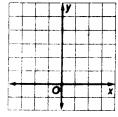
$$Slope =$$

y-intercept =

Graph:

CHECK to see which part of the graph should be shaded. Insert point (0, 0) into the inequality.

Is the inequality in the slope-intercept form? If not, rearrange.


$$y \le 2x + 4$$

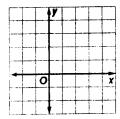
Slope =

y-intercept =

Graph: (Should you use a dashed or solid line?)

CHECK to see which part of the graph should be shaded. Insert point (0, 0) into the inequality.

Is the inequality in the slope-intercept form? If not, rearrange.

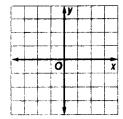

$$y + x > 3$$

Slope =

y-intercept =

Graph: (Should you use a dashed or solid line?)

CHECK to see which part of the graph should be shaded. Insert point (0, 0) into the inequality.



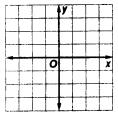
 $(c. | y-x \ge 1)$

Is the inequality in the slope-intercept form? If not, rearrange.

....

Graph: (Should you use a dashed or solid line?)

CHECK to see which part of the graph should be shaded. Insert point (0, 0) into the inequality.


7

Is the inequality in the slope-intercept form? If not, rearrange.

$$Slope =$$

Graph: (Should you use a dashed or solid line?)

CHECK to see which part of the graph should be shaded. Insert point (0, 0) into the inequality.